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Navier Stokes Equation, 
Wave Equation, 

Schrodinger Equation, …

 

 

PINNs: Raissi et al. 2019 PGNN: Karpatne et al. 2017
PGRNN: Jia et al. 2019

PGA-LSTM: Daw et al. 2020

Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).

Format Used for 
Representing Knowledge PDEs Equations/Rules Knowledge 

Graphs
Symmetries Mechanistic 

Models

NequIP: Batzner et al. 2022
Cormorant: Anderson et al. 2019
Equivariant-Net: Wang et al. 2021

Zareian et 
al. 2020

MCL: Ladwig et al. 2024
dPL: Shen et al. 2023
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Type of Scientific 
Knowledge

Perfect and 
Complete

Imperfect 
and Partial

Format Used for 
Representing Knowledge PDEs Equations/Rules Knowledge 

Graphs
Symmetries Mechanistic 

Models

Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).

Example: Solving known PDEs

Navier Stokes Eq., Heat Eq., Wave Eq., Schrodinger Eq., …

Primary Objective: Improve Computational Efficiency

PINNs: Raissi et al. 2019, DeepONets: Lu et al. 2021, FNOs: Li et al. 2021

Example: Modeling complex dynamical 
systems with missing/imperfect physics

Modeling Turbulence, 
Multi-phase Flow,

Cloud Physics, Aerosols, …

PGNN: Karpatne et al. 2017, PGRNN: Jia et al. 2019, PGA-LSTM: Daw et al. 2020

Additional Objective: Improve Modeling Accuracy
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Type of Scientific 
Knowledge

Form of Knowledge-ML 
Integration 

Perfect and 
Complete

Imperfect 
and Partial

Process-centric ML-centric

Format Used for 
Representing Knowledge PDEs Equations/Rules Knowledge 

Graphs
Symmetries Mechanistic 

Models

Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).

ML Model

Process-based 
ModelInputs Outputs

ML Model

Process-based 
Model

ML Model

Scientific Knowledge

Inputs Outputs

Hybrid Modeling

Inputs Outputs

dPL: Shen et al. 2022
Subgrid Parametrization

Turbulence Closure Modeling PGNN: Karpatne et al. 2017
MCL: Ladwig et al. 2024

PGNN: Karpatne et al. 2017
PINN: Raissi et al. 2019

Equivariant-Net: Wang et al. 2021



Organizing KGML Research: A Multi-Dimensional View

5

Type of Scientific 
Knowledge

Form of Knowledge-ML 
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Perfect and 
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Imperfect 
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Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).

Hybrid Modeling

Method for 
Incorporating Scientific 

Knowledge in ML Learning Architecture Pretraining
Knowledge

Knowledge

Knowledge

Poor Minima

Global Minima

PGNN: Karpatne et al. 2017
PINN: Raissi et al. 2019

PGA-LSTM: Daw et 
al. 2020

Equivariant-Net: 
Wang et al. 2021

PGRNN: Jia 
et al. 2019
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Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).

Hybrid Modeling

Method for 
Incorporating Scientific 

Knowledge in ML Learning Architecture Pretraining

Scientific Use-cases of 
KGML Forward 

Modeling
Reduced Order 

Modeling
Inverse 

Modeling
Equation 
Discovery

Generative 
Modeling

Downscaling
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Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).

Hybrid Modeling
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KGML Forward 

Modeling
Reduced Order 

Modeling
Inverse 

Modeling
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Generative 
Modeling

Downscaling



KGML Use Cases
Lake Temperature Modeling Physics-guided NNs 

(PGNNs): Daw et al. 2017

Physics-guided RNNs 
(PGRNNs): Jia et al. 2019

Goal: Predicting the temperature of 
the lake.
• Use imperfect and partial 

knowledge as loss functions
• Use simulation data for 

pre-training and observational 
data for finetuning

Chlorophyll-a Prediction

River-basin Characterization

Streamflow Forecasting

LSTM based Chl-a 
Prediction: Cen et al. 2022

Goal: Predicting the chlorophyll-a 
content of water bodies.
• Sparse observed data for 

chlorophyll
• Interested in predicting the 

blooms.

Knowledge-guided Self-supervised 
(KGSSL): Ghosh et al. 2022

Goal: Predict basin characteristics 
of rivers.
• Extract system characteristics 

from driver and response 
data.

Uncertainty Quantification 
(UQ-KGSSL): Sharma et al. 2022

Physics-guided Recurrent Graph 
Model (PGRGnN): Jia et al. 2020

KGML for Multi-scale Process and Data 
Assimilation: Kumar et al. 2023

Goal: Predict the stream flow of rivers.
• Use river-network data (graph) and 

the knowledge of thermodynamics 
to improve predictions.



Use Case 1:
Lake Temperature Modeling

9
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Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).

Hybrid Modeling
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Modeling
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Modeling
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Lake Temperature Modeling

Meteorological Input Drivers
E.g., longwave/shortwave radiation, air 
temperature, humidity, wind speed, etc.

Target
Temperature of water at every depth 
of the lake

1D Model of Temperature

Motivation

Growth and survival of 
fisheries

Harmful Algal Blooms Chemical Constituents:
O2, C, N



Physical Relationships of Temperature

Temperature directly related to 
density of water

Physical Relationship 1:



Physical Relationships of Temperature

Temperature directly related to 
density of water

Density of water monotonically 
increases with depth

Physical Relationship 1: Physical Relationship 2:



Physics-guided Neural Networks (PGNN)

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

The physics supervision is enforced as a soft constraint where the model is penalized when the predictions of the model violate the 
physics constraint.

 

Empirical Error Physics-Loss

• Easy to use: Constraints can be easily incorporated as 
physics loss functions.

• Unsupervised: Physics loss functions can be evaluated on 
unlabeled data.

PROS



PGNN shows improved generalization

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

Results on two different lakes: Lake Mille Lacs and Lake Mendota

PGNN consistently outperforms the other baselines for both lakes showing better Test RMSE and Physics 
Consistency.



Pretraining on Simulation Lakes

Simulation Data from the different lakes can be used to pretrain the RNN model. This will serve as a “better” initialization.

Poor Minima

Global Minima

Jia, Xiaowei, Jared Willard, Anuj Karpatne, Jordan Read, Jacob Zwart, Michael Steinbach, and Vipin Kumar. "Physics guided RNNs for modeling dynamical systems: A case study in simulating 
lake temperature profiles." In Proceedings of the 2019 SIAM international conference on data mining, pp. 558-566. Society for Industrial and Applied Mathematics, 2019.

Knowledge Guided Pretraining: 
An Optimization Perspective

Pretraining on Simulations

Simulation Data Pre-trained 
Neural Network

Observed Lake 
Data Fine-tuned model on 

observed data



Use Case 2:
KGML with Uncertainty 
Quantification
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Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).
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Uncertainty Quantification

Daw, Arka, R. Quinn Thomas, Cayelan C. Carey, Jordan S. Read, Alison P. Appling, and Anuj Karpatne. "Physics-guided architecture (pga) of neural networks for quantifying uncertainty in lake 
temperature modeling." In Proceedings of the 2020 siam international conference on data mining, pp. 532-540. Society for Industrial and Applied Mathematics, 2020.

     Generate a distribution over the predictions rather than point estimates.

• Regression: Predict the variance along with the output mean.

• Classification: Predict the confidence along with the output labels.

 

 

 

 Aims to quantify the  robustness of the ML models by assessing 
prediction reliability.



Uncertainty Quantification with MC Dropout

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

A schematic representation of using Dropouts to estimate uncertainty.

The red nodes are dropped while the green nodes 
contribute to the output of the neural network.

Repeat this “N” times

Estimated Mean

Estimated Variance



Approach 1: Dropouts with Physics-based Loss

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

Limitations

• Trained PGL-models are 
physically consistent.

• Each of the perturbed dropout 
networks are no longer 
physically consistent.



Proposed PGA-LSTM Framework

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

• Temporal Autoencoder: Encodes the input time 
series to obtain a temporal embedding.

• Monotonicity Preserving LSTM: Enforces the 
monotonicity constraint on the density 
predictions.

• Dense Layers: Takes the density estimates and 
the input drivers to predict temperature.



Monotonicity Preserving LSTM

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

Components in red represent the novel physics-informed innovations in LSTM

The ReLU function ensures that the 
residual outputs are non-negative, thus 
enforcing the monotonicity constraint.

Key Idea

The monotonicity preserving LSTM:
1. Adds a layer of interpretability into the model outputs, 
2. Makes it more robust to small perturbations in the model weights 
3. Ensures physics-generalization on unseen test set. 



Impact on predictive performance and physical 
consistency

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

Falling Creek ReservoirLake Mendota

PGA-LSTM improves the Test RMSE while always being physically consistent across both lakes.

Evaluation Metrics

• Test RMSE

• Physical Inconsistency



Monotonicity Preserving LSTM

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

The mean and the variance of the three models are computed from 100 MC-Samples. 



Monotonicity Preserving LSTM

Daw, Arka, Anuj Karpatne, William D. Watkins, Jordan S. Read, and Vipin Kumar. "Physics-guided neural networks (pgnn): An application in lake temperature modeling." In Knowledge Guided 
Machine Learning, pp. 353-372. Chapman and Hall/CRC, 2022.

The PGA-LSTM samples are always physically consistent while PGL-LSTM and LSTM samples 
are very much physically inconsistent.

Predictions are more robust to minor perturbations in model weights!



Use Case 3:
Hybrid Modeling

27
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Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).

Hybrid Modeling

Method for 
Incorporating Scientific 

Knowledge in ML Learning Architecture Pretraining
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KGML Forward 

Modeling

Reduced Order 
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Equation 
Discovery
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Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Process-based Modeling
- plethora of model approaches:

- energy-balance models: mixing depth by 
external energy

- turbulence-based models: advanced 
turbulence-closure

Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Process-based Modeling
- plethora of model approaches:

- energy-balance models: mixing depth by 
external energy

- turbulence-based models: advanced 
turbulence-closure

Can we combine these process models with data?

Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Modularized 1D Model

Modularized Process Models:

a) heating (atmosphere and geothermal)
b) ice, snow and snow-ice formation
c) vertical diffusion
d) convective overturn

• Imperfect Module: All of the physics modules are 
not perfect, i.e., some of the physical phenomena 
are more complex.
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Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Modular Compositional Learning (MCL)

Imperfect Modules: Diffusion Module

Idea: Replace the imperfect modules with deep 
learning based models.

• Richer Physics knowledge: We retain the interpretability 
and knowledge of the modular process based modules.

• Hybrid modeling: Deep learning modules learns to 
dynamics of the necessary “missing” module (in this case 
diffusion module) to learn a more accurate model.

PROS

Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Modular Compositional Learning (MCL)
Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Modular Compositional Learning (MCL)
Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Modular Compositional Learning (MCL)
Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Modular Compositional Learning (MCL)
Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Empirical Evaluation (Test Period 2015-17)

Comparing Observed Data and Processed-based 
model

Test 
RMSE: 
4.46

Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Empirical Evaluation (Test Period 2015-17)

Test 
RMSE:
5.27

Comparing the models:

1. After pretraining each of the deep learning 
models on simulation data.

2. Finetuning the entire deep learning pipeline 
on observed data. 

Test 
RMSE: 
4.46

Test 
RMSE:
1.94

Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Empirical Evaluation (Test Period 2015-17)

Test 
RMSE:
5.27

Plugging the deep-learning module into the 
process-based module pipeline.

Test 
RMSE: 
4.46

Test 
RMSE:
1.94

Test 
RMSE:
1.60

Slides courtesy of Robert Ladwig



Ladwig, Robert, Arka Daw, Ellen A. Albright, Cal Buelo, Anuj Karpatne, Michael Frederick Meyer, Abhilash Neog, Paul C. Hanson, and Hilary A. Dugan. "Modular Compositional Learning Improves 
1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning." Journal of Advances in Modeling Earth Systems 16, no. 1 (2024)

Empirical Evaluation (Test Period 2015-17)

Test 
RMSE:
5.27

Test 
RMSE: 
4.46

Test 
RMSE:
1.94

Test 
RMSE:
1.60

Test 
RMSE:
2.10

Slides courtesy of Robert Ladwig



Current Work in MCL

1D Lake Physics with MCL

1D Water Quality with MCL 1D Lake Physics with MCL: 
memory for multiple lakes



Use Case 5:
Lake Chlorophyll-a Prediction

42
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Karpatne, Jia, and Kumar. "Knowledge-guided Machine Learning: Current Trends and Future Prospects." arXiv:2403.15989 (2024).
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Transfer Learning for Chlorophyll-a Prediction

Problem Context:  
• Observations of chlorophyll-a vary across 

lakes, some being well-observed, others 
less-observed. 

• Deep learning models are data-hungry, 
show poor forecasting performance on 
target lakes with sparse data. 

●  

Research Question: How can we improve 
forecasting performance of chlorophyll-a on lakes 
with few observations? 

●  

Approach: Instead of “training from scratch” 
transfer Learning enables us to transfer 
knowledge learned from data-rich source lakes (in 
the form of pre-trained models) to target lakes.

44

Pre-trained 
Model (trained 
on simulation 

data)

Target Lake Observed 
data (sparse)Fine-tune

Train from 
scratch

Improved forecasting

Poor forecasting  
performance



Types of Transfer Learning methods
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Pre-trained 
Model

Target Lake Observed 
data (sparse)

Fine-tune Target Lake Observed 
data (sparse)

Zero-shot Fine-tuning

Direct deploy Fine-tune on a 
portion of the 
target data



Transfer Learning for Chlorophyll-a Prediction

Problem Setup
Pre-training: Model pre-trained on simulation data of lakes Mendota, Sunapee, 
FCR.
Models: LSTM [1], Transformer [2]

46

Data split in target lake = 70:30
Model trained/fine-tuned on the 
70% and tested on the 30% data.

>Following results are on the test 
set (i.e. 30% of data)

1. Hochreiter, S., & Schmidhuber, J"urgen. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
2. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." 

Advances in neural information processing systems 30 (2017).



Transfer Learning for Chlorophyll-a Prediction

47

• Fine-tuned model aligns 

with the ground-truth scale 

of chlorophyll data

• Fine-tuned model shows 

relatively more confident 

predictionsFig. 1 Predictions on FCR observed Test portion - Model trained from scratch

Fig. 2 Predictions on FCR observed Test portion - Model fine-tuned on FCR observed

LSTM model



Towards a Foundation Model

48

Observed + 
Simulation Data

Foundation 
Model

 Forecasting on 
less-observed lakes

Forecasting multiple 
target variables

.

.

.
Pre-train

Downstream Tasks

Fine-tune

Fine-tune

Learning Time-series representation

Encoder Decoder

Auto-encoder

LakeGPT: Building A Foundation Model for Aquatic Sciences


