KGML for Aquatic Sciences

 $H\frac{P}{L}B_{B}$

(cc)ey

RITER :: IX

0 mt=

H-fa

KGML Use Cases

Lake Temperature Modeling

Goal: Predicting the temperature of the lake.

- Use *imperfect* and *partial* knowledge as loss functions
- Use simulation data for pre-training and observational data for finetuning

Physics-guided NNs (PGNNs): Daw et al. 2017

Physics-guided RNNs (PGRNNs): Jia et al. 2019

River-basin Characterization

Goal: Predict basin characteristics of rivers.

• Extract system characteristics from driver and response data.

Knowledge-guided Self-supervised (**KGSSL):** Ghosh et al. 2022

Uncertainty Quantification (**UQ-KGSSL):** Sharma et al. 2022

depth

Chlorophyll-a Prediction

Goal: Predicting the chlorophyll-a content of water bodies.

- Sparse observed data for chlorophyll
- Interested in predicting the blooms.

LSTM based Chl-a Prediction: Cen et al. 2022

Streamflow Forecasting

Goal: Predict the stream flow of rivers.

 Use river-network data (graph) and the knowledge of thermodynamics to improve predictions.

Physics-guided Recurrent Graph Model (**PGRGnN):** Jia et al. 2020 KGML for Multi-scale Process and Data Assimilation: Kumar et al. 2023

Use Case 1: Lake Temperature Modeling

Lake Temperature Modeling

1D Model of Temperature

Motivation

Growth and survival of fisheries

Harmful Algal Blooms

Chemical Constituents: O₂, C, N

Physical Relationships of Temperature

Physical Relationships of Temperature

Physics-guided Neural Networks (PGNN)

The physics supervision is enforced as a soft constraint where the model is penalized when the predictions of the model violate the physics constraint.

- Easy to use: Constraints can be easily incorporated as physics loss functions.
- Unsupervised: Physics loss functions can be evaluated on unlabeled data.

PGNN shows improved generalization

Results on two different lakes: Lake Mille Lacs and Lake Mendota

PGNN consistently outperforms the other baselines for both lakes showing better Test RMSE and Physics Consistency.

Pretraining on Simulation Lakes

Simulation Data from the different lakes can be used to pretrain the RNN model. This will serve as a "better" initialization.

Jia, Xiaowei, Jared Willard, Anuj Karpatne, Jordan Read, Jacob Zwart, Michael Steinbach, and Vipin Kumar. "Physics guided RNNs for modeling dynamical systems: A case study in simulating lake temperature profiles." In *Proceedings of the 2019 SIAM international conference on data mining*, pp. 558-566. Society for Industrial and Applied Mathematics, 2019.

Use Case 2: KGML with Uncertainty Quantification

Uncertainty Quantification

Generate a distribution over the predictions rather than point estimates.

- Regression: Predict the variance along with the output mean. •
- Classification: Predict the confidence along with the output labels. •

Aims to quantify the **robustness** of the ML models by assessing

Daw, Arka, R. Quinn Thomas, Cayelan C. Carey, Jordan S. Read, Alison P. Appling, and Anuj Karpatne. "Physics-guided architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling." In Proceedings of the 2020 siam international conference on data mining, pp. 532-540. Society for Industrial and Applied Mathematics, 2020.

Uncertainty Quantification with MC Dropout

A schematic representation of using Dropouts to estimate uncertainty.

Approach 1: Dropouts with Physics-based Loss

Proposed PGA-LSTM Framework

- **Temporal Autoencoder**: Encodes the input time series to obtain a temporal embedding.
- Monotonicity Preserving LSTM: Enforces the monotonicity constraint on the density predictions.
- **Dense Layers:** Takes the density estimates and the input drivers to predict temperature.

Monotonicity Preserving LSTM

Key Idea

The **ReLU function** ensures that the residual outputs are **non-negative**, thus enforcing the monotonicity constraint.

Components in **red** represent the novel physics-informed innovations in LSTM

The monotonicity preserving LSTM:

- 1. Adds a layer of interpretability into the model outputs,
- 2. Makes it more **robust** to small perturbations in the model weights
- 3. Ensures physics-generalization on unseen test set.

Impact on predictive performance and physical consistency

PGA-LSTM improves the Test RMSE while always being physically consistent across both lakes.

Monotonicity Preserving LSTM

The mean and the variance of the three models are computed from **100 MC-Samples**.

Monotonicity Preserving LSTM

The PGA-LSTM samples are always physically consistent while PGL-LSTM and LSTM samples are very much physically inconsistent.

Predictions are more robust to minor perturbations in model weights!

Use Case 3: Hybrid Modeling

Slides courtesy of Robert Ladwig

Process-based Modeling

- plethora of model approaches:
 - **energy-balance** models: mixing depth by external energy
 - **turbulence-based** models: advanced turbulence-closure

Slides courtesy of Robert Ladwig

Process-based Modeling

- plethora of model approaches:
 - energy-balance models: mixing depth by external energy
 - turbulence-based models: advanced turbulence-closure

Can we combine these process models with data?

Modularized 1D Model

Modularized Process Models:

- a) heating (atmosphere and geothermal)
- b) ice, snow and snow-ice formation
- c) vertical diffusion
- d) convective overturn

CONS

• Imperfect Module: All of the physics modules are not perfect, i.e., some of the physical phenomena are more complex.

Imperfect Modules: Diffusion Module

Idea: Replace the imperfect modules with deep learning based models.

⊙ √ PROS

- Richer Physics knowledge: We retain the interpretability and knowledge of the modular process based modules.
- Hybrid modeling: Deep learning modules learns to dynamics of the necessary "missing" module (in this case diffusion module) to learn a more accurate model.

Process-based framework

Process-based<mark>, pretrained deep learning</mark>, <mark>finetuned deep learning</mark>

Robert Ladwig

Process-based framework

Process-based<mark>, pretrained deep learning</mark>, <mark>finetuned deep learning</mark>

Robert Ladwig

Process-based framework

Process-based<mark>, pretrained deep learning</mark>, <mark>finetuned deep learning</mark>

Robert Ladwig

Process-based framework

Slides courtesy of Robert Ladwig

Empirical Evaluation (Test Period 2015-17)

Comparing Observed Data and Processed-based model

2015-08-06 2016-01-19 2016-07-04 2016-12-17 2017-06-02 2017-11-16

D Process-based framework

2015-08-06 2016-01-19 2016-07-04 2016-12-17 2017-06-02 2017-11-16

1 Process-based model framework

Empirical Evaluation (Test Period 2015-17)

A Observed data

Comparing the models:

- 1. After pretraining each of the deep learning models on simulation data.
- 2. Finetuning the entire deep learning pipeline on observed data.

2 Pretrained deep learning framework

5.0 (i) 10.0 (i) 15.0 20.0 2015-08-06 2016-01-19 2016-07-04 2016-12-17 2017-06-02 2017-11-16

D Process-based framework

3 Finetuned deep learning framework

Olimbo Ol

Empirical Evaluation (Test Period 2015-17)

Plugging the deep-learning module into the process-based module pipeline.

D Process-based framework

4 Hybrid model framework

Empirical Evaluation (Test Period 2015-17)

Current Work in MCL

4 Hybrid model framework

1D Lake Physics with MCL

1D Water Quality with MCL

1D Lake Physics with MCL: memory for multiple lakes

Use Case 5: Lake Chlorophyll-a Prediction

Transfer Learning for Chlorophyll-a Prediction

Problem Context:

- Observations of chlorophyll-a vary across lakes, some being well-observed, others less-observed.
- Deep learning models are data-hungry, show poor forecasting performance on target lakes with sparse data.

Research Question: *How can we improve* forecasting performance of chlorophyll-a on lakes with few observations?

Approach: Instead of "training from scratch" *transfer Learning* enables us to transfer knowledge learned from data-rich source lakes (in the form of pre-trained models) to target lakes.

Types of Transfer Learning methods

Zero-shot

Fine-tuning

Transfer Learning for Chlorophyll-a Prediction

Problem SetupData split in target lake = 70:30Pre-training: Model pre-trained on simulation data of lakes Mendota, Sunapee,
FCR.Data split in target lake = 70:30Models: LSTM [1], Transformer [2]Nodels: LSTM [1], Transformer [2]

- 1. Hochreiter, S., & Schmidhuber, J"urgen. (1997). Long short-term memory. *Neural Computation*, 9(8), 1735–1780.
- 2. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).

Transfer Learning for Chlorophyll-a Prediction

relatively more confident predictions

•

LSTM model

Fig. 2 Predictions on FCR observed Test portion - Model fine-tuned on FCR observed

Towards a Foundation Model

Learning Time-series representation

LakeGPT: Building A Foundation Model for Aquatic Sciences

NAIRR Pilot 240161